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SOME ESTIMATES FOR A DECOMPOSITION 
OF HYPERSURFACE SINGULARITIES 

INTO THE SIMPLEST ONES 

BY  

Y. YOMDIN 

ABSTRACT 

The upper and lower bounds are obtained for the maximal number of Morse 
points with the same critical value into which an isolated hypersurface singular- 
ity can be decomposed. 

1. Introduction 

Let 8(f) be the maximal possible number of Morse points with the same 

critical value, into which an isolated singularity of an analytic germ 

f : (C m, 0)---> (C, O) can be decomposed. Let us define also a( f )  as max{k I the 

singularity of f abuts a singularity of type Ak}. 

In this paper some inequalities are obtained for numbers 8(f) and a(f) .  The 

lower bounds for a (f) and then for 8(f) are obtained by the explicit construction 
of deformation of the singularity, which gives the required decomposition. The 

consideration of the intersection matrix of the singularity gives the upper bounds 

for 8. As a consequence a weaker inequality is obtained, which contains only 

Milnor numbers of the singularity and of its generic hyperplane section. 

2. Some definitions 

Let f:(C% 0)---> (C,0) be the germ of an anlytic function with an isolated 

singularity at the origin. The Milnor number/z (f) of this singularity is defined as 

(1) /z(f)=dimcOmo/{ Of "" Of} 
' 0 Z 1 '  ' dZm ' 

where Om.o is the ring of germs of analytic functions at 0 E  C% and 

{O[/azl,..., O[/Ozm} is the ideal, generated by all partial derivatives of f. 
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Two singularities f :  (C'~,0)--~(C, 0) and g :(C",0)---~(C,0) are said to be 

equivalent (or of the same type) if there exists a germ of an analytic diffeomor- 

phism ,# : (C",0)---~ (C",  0) such that g = f~ 

Singularities f : (C" ,0) - - -~(C,0)  and g :(Ck,0)---~(C,0), m _--> k, are called 

stably equivalent if there exists a local coordinate system wl, �9 �9 -, w,, at 0 ~ C m 

such that 
f(w,,..., w.) = f,(w,,"., w~) + wL, + ... + w~, 

and fl is equivalent to g. 

The following well-known fact will be used: 

PROPOSITION 1. For f : ( C  m, 0)---> (C, 0) let rank (32f/az~3z,)o = q, q < m. Then 

the singularity o f f  is stably equivalent to the singularity of the function ]:1 of m - q 

variables, and the Hessian of f, at 0 is equal to zero. 

The singularity with the Milnor number /z ,  which is stably equivalent to the 

singularity of the function of one variable, is said to be of type A,. By a 

coordinate change it can be reduced to the form 

f :  Z ~+I-~ z2-~ ...-JcZ 2. 

The singularity of type A1 is called a Morse point. 

Let f:(C"~,O)-->(C,O) be as above. The germ of the analytic function 

F : (C m x C, 0)----> (C, 0), for which F(z,  O) =- f ( z )  is called the deformation of f 

with base C. 

The singularity of f under the deformation F can be decomposed with respect 

to the type X = (X,, �9 �9 Xk), where X, = (X~1, �9 �9 ", X~.,, ), if for all t E C, 0 < I t [ "~ 

1, the function f, = F ( - ,  t) in small neighbourhood of 0 E C "  has exactly k 

different critical values, the ith critical value being attained at critical points of 

types X~,I,-..,X~.,. In this case / z ( X ) =  E,.,/z(X~./). 

A singularity of type X abuts a collection of singularities Y = (Y,, �9 �9 ", Y,) if X 

can be decomposed with respect to the type ( Y , . . . ) .  

3. Definition of 8 and a 

DEFINITION. For an isolated singularity of type X let 6 (X)  be the maximal k 

for which X abuts a collection Y = (A1, � 9  AQ. Let a ( X )  be the maximal l, for 

which X abuts Y = {A,}. 

The following properties of 8 and a can be easily proved: 

(i) If singularities X and Y are stably equivalent, then 8 ( X ) =  6(Y),  

a ( X )  = A ( Y ) .  
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(ii) If X abuts Y, then 8 ( X ) =  > 8(Y),  a(X)>= a ( Y ) .  

(iii) 8(A,) = [ ( /+  2)/2]. 

From (ii) and (iii) it follows that 

(iv) 8(X)  > [ ( a ( X ) +  1)/11. 

For the ease m = 2, i.e. for singularities of plane curves, ~ is a number of 

"double  point" of the curve f = 0 at 0, ~ and is given by the formula 

= �89 + r - 1), 

where /x  is the Milnor number and r the number of branches of the curve f = 0 

at 0 ([2]). In this case also 8 = dime 0 / 0 ,  where O is a local ring of the curve 

[ = 0 at 0, and 6 its normalization ([5]). 

4. The lower bound for a and 8 

Let f : (C m, 0)---~ (C, 0) be as above and let CP m-1 be the space of hyperplanes 

in C "  passing through the origin. It is proved in [3] that there exists a 

Zariski-open dense subset U C CP "-1 such that for L E U, the restriction f / L  

has an isolated singularity at the origin. The Milnor number of this singularity is 

independent of L E U and is denoted by /z~'- 'or).  

THEOREM 1. a 0 r) ~ / z  Or)/p. t"*-1)Or). 

PROOF. The set U C CP "-1 above can be chosen in such a way that the 

following is true: 

Let us fix L E U and choose coordinates z l , . . . ,  z~, so that L is given by 

z~ = 0. Then the curve FL defined by equations 

0f_ _ 0 , ' -  ~f = 0 (the polar curve) 
aZ2 "- "' aT.,,, 

is reduced and has a number of irreducible components I in its decomposition 

FL = I...J Fq which is independent of L E U. Furthermore,  setting raq = (Fq, L)o, 

eq = (Fq, {3f/dz~ = 0})o (where ( , )o is the intersection multiplicity), we have a 

sequence of integers eq, mq, which is also independent of L E U and 

~,, eq =/z ( / ) ,  ~ rnq = ~t(m-1)or) (see [4]). 

Let  a = [supq (eq ]mq)]. It follows that a _->/.~//x t,~-l). Take a component  Fq, on 

which this supremum is attained, and the pont x ~ Fq\{0}, and consider zl as a 

local coordinate on Fq in a neighbourhood of x. Let Px(z~) be the Teilor 
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polynomial of f /Fq at x of the degree a. Then f - e x ( Z l ) / I ' q  vanishes with 

multiplicity k => a + 1 at x. 

LEMMA 1. The funct ion fx = f -  Px(z , )  has a singularity o f  type Ak_a at x. 

PROOF. Since P is a polynomial in one variable z,, 

0[~= 0~_ i = 2 , . . ,  m, 
OZ~ OZ, ' 

hence 

~ 2  2 2 
r a n k (  O~f~ ) > r a n k / 0 - ~  ) = r a n k ( . O - ~ .  ~ = m - l ,  

\ Oz~Ozj/~_, = \ Oz~Ozj/,~_2 \ OZ~dZj ]~--2 
j ~ l  j ~ l  1~1 

where the last equality follows from the fact that the cu rve  Fq, defined in the 

neighbourhood of x by equations Of/az2 = 0, .  �9 Of/Oz,, = 0, is reduced. Now by 

Proposition 1 the singularity of fx at x is of type A,,  where /~ is its Milnor 

number. But in this case the number /z  can be easily computed by formula (1) - -  

it is equal to k - 1 .  

Now it only remains to prove that all the coefficients of Px tend to zero as 

x ~ 0 on Fq. Letn  : D ---> Fq be the normalization of Fq (D a neighbourhood of 

0 E  C). Then from (Fq, L ) o =  mq, (Fq,{Of/Oz, = 0})o= eq it follows that we can 

choose the coordinate t on D such that 

But 

hence 

m z i o n  = t 4, 

.-v.Z-on = flteq + . . . ,  fl ~z O. 
Ozl 

i = l  ~ Z i  " d - 7  ~- ~ Z l  " d-'--f- 0z2 = = Oz,, = 0 on Fq , 

f o n = ~mq tmq+%..F ... 
mq + eq 

and as t = z~/m~, we have [/Fv = "yZ]+eJm~+ "" ", y : O .  

Hence all the derivatives of [/Fv with respect to z, up to a - th  tend to zero as 

z,---> O, and hence the coefficients of the Teilor polynomial Px tend to zero as 

x ~ O .  

COROLLARY 1. 26(f)_-  > aft)_-> t~(.f)/t~"-'(D. 
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5. The upper bound for B 

To formulate the following theorem we need some results on the local 

topology of isolated singularities ([2]). 
Let [:(C",O)--*(C,O) be as above and let D~ and S, be an open disk and 

sphere of radius e centered at 0 E C".  Then if 0 < e ,~ 1, K = f-l(0) n S~ is a 

smooth m -  3-connected manifold (of dimension 2 m - 3 ) ,  and the mapping 

[ / I f I :S , \K~  S ~ is a smooth fibering (the Milnor fibering). Its fiber F is a 

smooth 2m-2-d imens iona l  manifold, ditieomorphic to the manifold De n 

f-l(~), 0 < I ~ I "~ e, and homotopy equivalent to the wedge of/z O r) spheres S "-~ 

Let h : F ~  F be the characteristic mapping of this fibering. 
Similarly if there is one more function .fl : (C m, 0) ~ (C, 0), such that the variety 

Y = f- l (0)N/?~(0)  has an isolated singularity at 0 E  C m, Ks = Y N S~ is now 

m - 4 - c o n n e c t e d  manifold (dim K ~ = 2 m - 5 ) ,  and [t/I[~I:K\KI~S ~ is a 
smooth fibering. Its fiber F1 is diffeomorphic to the manifold D, n . f - l ( ~ ) n  

f~~(~0, where ( g , ~ ) E  C 2 is sufficiently small regular value of 

Or , /0 : (C m, 0)---~ (C 2, 0). F~ is also homotopy equivalent to the wedge of spheres 
s ra --2 

We shall consider the reduced homology groups with complex coefficients. 

For given singularity f : (C m, 0)--* (C, 0) let us consider the intersection form to 

on Hm_~(F). Let por) be corank to (equal to d i m K e r ( h , - I ) :  Hm_~(F)--* 
Hm_I(F) or to dim Hm-~(K)) ([2]). 

THEorE~ 2. 28or)_-<~or)+por).  

PROOF. Replacing the singularity f by the stably equivalent one, we can 
suppose that m is even and hence the form to is skew-symmetric. By definition of 
& the singularity of f can be decomposed into/~ Morse points, from which 8(f)  
have the same critical value. The vanishing cycles, corresponding to these 8or) 

Morse points ([1]) are pairwise nonintersecting. Hence  the restriction of the form 

to on the Bor)-dimensional subspace M CH,_~(F),  generated by these cycles, is 

zero (self-intersections of cycles are zero since to is skew-symmetric). Let N be 

the zero subspace of to, then dim N = p and to defines a nondegenerated form a5 

on R = H,_I(F)/N, and t~ / / 5 / -0 ,  where ~l r is the image of M in R. 

Let s = dim 1r s ~ 8or) - p. For the basis e l , . . . ,  e, o f / ~  let e ~ , . . . ,  e's be such 
that ~(e~, e~)= 8~j, and let M '  be the subspace, generated by e~, . . . ,e ' , .  Then 
M ' O ~ 7 / = 0 ,  since a~ /~ /=0 .  Hence  dimR=l~-p~-2s>-2(Bor)-p),  and 

2/~Or)--</~ +p.  

TrIEOrEM 3. por)----</Zr 
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PROOF. Let L = {1 = 0} be the generic hyperplane in C" ,  passing through the 

origin. Let K = Se N.f-~(0), K1 = K N L  = S, N F t ( 0 ) A  l - t0 ) ,  and let hi be the 

characteristic mapping of the fibering l/I l I" K \ K ~  S t, Ft its fiber. 

The exact sequence 

Hm_~(K,)--~ H.,_,(K)---~ Hs-x(r,  K,)---~ Hm_2(r,)--~ 

where Hm-I(K,)= Hm-4(K,)= 0, gives now: 

p = dim Hm_I(K)<= dim HI-~(K, K1)= dim Hm-2(K\Ka)= dim Hm-2(K\KO. 

The last group can be included in the Wang exact sequence of the fibering 

l /I I I : K\K~--~ St : Hr,,-2(F~) h,.-1 > Hm-2(F,) ~ Hm_2(K\K,) ~ Hm_3(F1) ~ .  

The fiber Ft can be identified with the manifold D. f3 L f3 f- ' (~) ,  0 < !~ [ .~ 1, 

i.e. with the Milnor fiber of singularity of f/L. Then Hm_3(F~)=O, 
dimHm_2(F,) =/ztm-1)(/), and we have: 

p _-< dim Hm-2(K\K~) __--- dim Hs-2(F 0 = /z  <m-x). 

COROLLARY 2. 28( / )_-  </~ff)+/z(m- ' ) ( f ) .  

REMARK 1. Another  proof of the last inequality was given by B. Teissier [4]. 

REMARK 2. For  the case m = 2 we have an equality 6(f )  = (# ~p)/2, since p 

in this case is equal to r - 1, where r is the number of branches of the curve jf = 0 

at 0. /z (1) in this case can be strictly less than p. 

6. S o m e  consequences  

We have now the following estimates for 8 and a:  

8____>[_q_~__l], a__> /z (.) (ra--1), 28 ----< /Z + p, 

and since /z ~m-, __< p, /z//z ~m-, =< 28 _--</z +/z  (m-,. 

We can also derive an estimate for 8 and a in terms o f /x  only: 

COgOLLARY 3. Let q = m - rank (c92[/~z,0zj). Then Iz '/q < 28 <-_ 
/z (1 + 1//x l/q), a > / z  1/~. 

PROOF. From Proposition 1 the singularity of f at 0 is stably equivalent to the 

singularity of function [~ of q variables, and 8(.f) = 8(f0,  a ( f )  = a ( /0 .  For f~ we 

have inequalities (*), with /z eq-~) instead /z (m-'). But  by [3], 
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/.t t4- )---- 

COROLLARY 4. Le t  mo be the multiplicity of f~ at O. Then 

< < (1+  1 ) mo - 1 _ -  2 8 ( / ' )  _-/., mo - 1 " 

PROOF. Also by [3], 

/xtq_~= mo-  1. 

It follows from Proposition 1 that mo(fl)---3, if q #  0. Then we have 

COROLLARY 5. For all singularities except A~, 8 <-]pt. 
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